STABILITY OF GENERALIZED EULER-LAGRANGE FUNCTIONAL EQUATIONS

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Euler-lagrange Equations

. Consider a mechanical system consisting of N particles in R subject to some forces. Let xi ∈ R denote the position vector of the ith particle. Then all possible positions of the system are described by N -tuples (x1, . . . , xN ) ∈ (R) . The space (R) is an example of a configuration space. The time evolution of the system is described by a curve (x1(t), . . . , xN (t)) in (R) and is governed...

متن کامل

Generalized Euler–Lagrange equations for fuzzy fractional variational calculus

This paper presents the necessary optimality conditions of Euler–Lagrange type for variational problems with natural boundary conditions and problems with holonomic constraints where the fuzzy fractional derivative is described in the combined Caputo sense. The new results are illustrated by computing the extremals of two fuzzy variational problems. AMS subject classifications: 65D10, 92C45

متن کامل

On the Generalized Ulam-Gavruta-Rassias Stability of Mixed-Type Linear and Euler-Lagrange-Rassias Functional Equations

In 1940, Ulam [1] proposed the famous Ulam stability problem of linear mappings. In 1941, Hyers [2] considered the case of approximately additive mappings f : E→ E′, where E and E′ are Banach spaces and f satisfies Hyers inequality ‖ f (x+ y)− f (x)− f (y)‖ ≤ ε for all x, y ∈ E. It was shown that the limit L(x) = limn→∞ 2−n f (2nx) exists for all x ∈ E and that L : E→ E′ is the unique additive ...

متن کامل

Flat minimizers of the Willmore functional: Euler-Lagrange equations

Let S ⊂ R be a bounded C domain and let g denote the flat metric in R. We prove that there exist minimizers of the Willmore functional restricted to a class of isometric immersions of the Riemannian surface (S, g) into R. We derive the Euler-Lagrange equations satisfied by such constrained minimizers. Our main motivation comes from nonlinear elasticity, where this constrained Willmore functiona...

متن کامل

The Reduced Euler-Lagrange Equations

Marsden and Scheurle [1993] studied Lagrangian reduction in the context of momentum map constraints—here meaning the reduction of the standard Euler-Lagrange system restricted to a level set of a momentum map. This provides a Lagrangian parallel to the reduction of symplectic manifolds. The present paper studies the Lagrangian parallel of Poisson reduction for Hamiltonian systems. For the reduc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Honam Mathematical Journal

سال: 2007

ISSN: 1225-293X

DOI: 10.5831/hmj.2007.29.1.061